arrays

class pymethods.arrays.Angle(value: float, units='radians', **kwargs)
property deg
classmethod deg_to_rad(degrees: object) → object
property rad
classmethod rad_to_deg(radians: object) → object
class pymethods.arrays.Vector
angle(vector: numpy.ndarray)
as_numpy()
change_reference_frame(basis: numpy.ndarray) → numpy.ndarray
cross(vector: numpy.ndarray) → numpy.ndarray
direct_vector(vector: numpy.ndarray) → numpy.ndarray
directed_angle(vector: numpy.ndarray, direction: numpy.ndarray) → Union[numpy.ndarray, float]
dot(b, out=None)

Dot product of two arrays.

Refer to numpy.dot for full documentation.

numpy.dot : equivalent function

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2.,  2.],
       [2.,  2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8.,  8.],
       [8.,  8.]])
magnitude()
make_3d()
make_column()
normalize()
perpendicular(vector: numpy.ndarray) → numpy.ndarray
plot2d(*args, **kwargs)
plot3d(*args, **kwargs)
project_to_plane(normal: numpy.ndarray) → numpy.ndarray
quiver2d(*args, **kwargs)
quiver3d(*args, origin=None, **kwargs)
quiverly(*args, fig=None, showarrow=True, color='black', scale=5, origin=None, arrow_size='scaled', line_kwargs=None, name='Vector', showlegend=False)
rotate_around_vector(vector: numpy.ndarray, phi: float, units='radians') → numpy.ndarray
rotation_matrix(phi: float, units='radians') → numpy.ndarray
scalar_project(vector: numpy.ndarray) → numpy.ndarray
scatter2d(*args, **kwargs)
scatter3d(*args, **kwargs)
scatterly(*args, fig=None, color='black', showlegend=False, **kwargs)
skew_symmetric()
to_vtk(method='pyvista', origin=[0, 0, 0])
vector_project(vector: numpy.ndarray) → numpy.ndarray

vector projection of self onto input

class pymethods.arrays.Basis
make_3d()
quiverly(*args, **kwargs)
skew_symmetric()
to_vtk(method='pyvista', origins=None)
class pymethods.arrays.Vectorspace
quiverly(*args, **kwargs)
class pymethods.arrays.Pointsurface(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
to_vtk(method='pyvista', includeNormals=False, includeCurvature=False, structuredShape=None, **kwargs)

converts our points surface into a vtk object

Args:

method (str, optional): [description]. Defaults to ‘pyvista’. includeNormals (bool, optional): [description]. Defaults to False. includeCurvature (bool, optional): [description]. Defaults to False. structuredShape ([type], optional): [description]. Defaults to None.

Raises:

Exception: [description]

Returns:

[type]: [description]

class pymethods.arrays.Disk(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
class pymethods.arrays.Cylinder(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
class pymethods.arrays.Ellipsoid(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
class pymethods.arrays.Sphere(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
class pymethods.arrays.Torus(*args, leafsize=200, neighbours=50, external=True, log=True, **kwargs)
class pymethods.arrays.ColumnVector
class pymethods.arrays.Array
class pymethods.arrays.Curve(*args, normal=None, centroid=None, **kwargs)
to_vtk()
class pymethods.arrays.Contour(*args, normal=None, centroid=None, **kwargs)
class pymethods.arrays.FlatContour(*args, normal=None, centroid=None, **kwargs)

Flat contours are 3d contours which exist on a plane specified by a normal. Note: The contour is automatically converted to 3d